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SHORT NOTES

Strain determination from three known stretches—an exact solution
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Abstract—In a domain of finite homogeneous deformation, the strain ellipse is uniquely specified by three
linearly independent stretch measurements. An exact determination of the principal reciprocal quadratic
stretches and principal directions is obtained by solving three simultaneous equations. The equations derived
have important applications to the problem of constructing the strain ellipsoid from sectional data and to

finite-element interpolation.

INTRODUCTION

DETERMINATION of the strain ellipse from three measured
stretches is a classic problem in geological strain analysis.
Ramsay (1967, pp. 80-81) presented a graphical
approach using the Mohr circle construction. This solu-
tion was also adopted by Ramsay & Huber (1983, pp.
91-104), whilst Sanderson (1977) and Ragan (1987)
introduced alternative procedures. The existence of an
exact solution using three simultaneous quadratic equa-
tions has been alluded to by previous workers, but
Ragan’s method of matrix inversion and eigenvector
determination is the only direct treatment available. The
derivation in this paper yields the elusive solution to the
three simultaneous stretch equations; it differs from
Ragan’s approach in that one-line expressions for princi-
pal directions and reciprocal quadratic stretches are
obtained. As in all previous treatments, the analysis is
two-dimensional and strain homogeneity is assumed.

DERIVATION

Following standard notation, A’ denotes the reciprocal
quadratic stretch of a line and ¢ its orientation relative to
an arbitrary zero direction in the deformed state. Three
longitudinal strain markers are distinguished by sub-
scripts 4, b, c and the principal directions in the deformed
state are labelled 1 and 2. From the equation of an ellipse
oriented oblique to its reference frame (Fig. 1)

A, cos? (¢, — ¢1) + A, sin® (¢, = ¢1) -1
ll j'2

where A, denotes the squared length of an arbitrary
radius at an angle ¢, to the zero direction. Rearranging,

(@

writing 4’ for 1/, and repeating for subscripts b and c,

Ao =2icos’ (¢, — ¢y) + Assin’ (¢, — @) (2)
Ap = Ajcos’ (¢ — @) + Az sin’ (¢ — ¢1)  (3)
A= 1j cos’ (p. — ¢1) + Assin’ (g — ¢1)  (4)

(compare Ramsay 1967, equation 3-31). Dividing equa-
tion (2) by sin’(¢, — ¢,) and equation (3) by
Sin2 (¢b - ¢1)’
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A A + . (6)

sin® (¢, — @) ~ tan? (9 — 91)

then subtracting equation (6) from equation (5) to elimi-
nate A3,
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Fig. 1. Strain ellipse with strain marker a. Simple trigonometry yields
equation (1).
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Similarly. 4] may be eliminated to yield
Al 5
e — Al tan” (¢, — ¢
COSZ (¢u - (pl) . (¢ ¢l)
_ b
cos® (¢ — ¢1)
Equations (7) and (8) may be rearranged thus,

— Ay tan® (¢, — ¢1). (8)

Al 3 Ab
ﬂi _ sin3 (¢,1, - ¢|) Sin2 (¢;7 - ¢|) (9)

tan2 (¢a - ¢]) - tan’ (¢h - ¢1)
A _ Ab
oG 0) T @00y
tan” (¢, — ¢1) — tan” (¢ — ¢y)
These are expressions for the principal reciprocal quad-
ratic stretches in terms of two arbitrary longitudinal
strain markers a and b, and the maximum principal
stretch direction ¢,. In order to eliminate the latter, the
third strain marker, ¢, must be employed.
From the well known properties of Mohr circle con-
structions (e.g. Ramsay 1967, p. 69). equations (2), (3)
and (4) may be rewritten thus,

=ML A g, - gy (D)
2 2
M A=A
Ap = ]2 =+ 12 = cos 2(¢p — 91) (12)
Al = A : e A ; A cos 2(¢p. — ¢;).  (13)

Subtracting equation (12) from equation (11) and equa-
tion (13) from equation (12),

B = 2y = M B cos 2, — 1) — <05 20y — 90)
(14)

3 2= BB fcos 2gy — 1) — cos A, ~ ¢l
) (15)

Eliminating the common factor, (4] — 43)/2, by cross-
division,
Ay = Ay
cos 2(¢u - ¢1) - COS 2(¢h - (pl)
Ap — Al
= - 16
cos 2gn — §) —cos 2 — g O

or, in other words.
Aalcos 2(py — ¢)) — cos 2P, — ¢1)]
+ Ah[cos 2(p. — @1) — cos 2, — ¢1)]
+ Afcos 2(p, — @1) = cos 2, — ¢1)] = 0. (17)
Regrouping the factors in equation (17),
(Ao = 4p) cos 2(p, — @) + (4, = A¢) cos 2(gp, ~ ¢y)
+ (A, — A}) cos 2(¢p, — ¢1) = 0. (18)
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Using the cosine rule, cos (A — B) = cos A.cos B +
sin A .sin B, equation (18) becomes

[(4; = 45) cos 2, + (4}, — () cos 29,
+ (A — AL cos 2¢,] cos 2¢,
+ [(Ay — 44) sin 29, + (A, — ;) sin 29,

+ (A, — AL} sin 2¢,] sin 2¢p, = 0. (19)

To solve for the unknown principal direction, divide
equation (19) by cos 2¢,. and then by the coefficient of
sin 2¢,.

(A = Ap) cos 29, + (A5 — Al) cos 29,
+ (A, — A) cos 2¢,

tan 2¢p, = -
an 20 (A, = Ap) sin 2¢. + (A, — A[) sin 2¢,
+ (A, — A;) sin 2¢,
or
(Ay = Ap) cos 2@, + (A}, — A.) cos 29,
! + (AL — 4g) cos 29,
= — arct: .
4 2 e (A; — Ap)sin2¢p. + (4, — A.) sin 29,

+ (A, — A) sin 2¢,
(20)

Equation (20) may be written more succinctly using
summations ranging over a permutation of the sub-
scripts.

> (A — 44) cos 2¢,
¢, = —— arctan | &<

2 3 (A, — A}) sin 2¢,

a b

(21

Equations (9) and (10) may also be tidied by writing
2= ¢ — A2,

o Pasect (@, — @) = A sec’ (¢ — @)

i tan® (¢, — ¢;) — tan” (@ — ;)

(22)

for i =1, 2 and j = 2, 1. These two equations give
expressions for unknown parameters of the principal
directions (subscripts 1 and 2} in terms of known param-
eters of the lines subscripted a, b and c. In practice, given
three independentlongitudinal strain markers, equation
(21) is solved first and the resultant value of ¢, is
substituted in equation (22) to-obtain the principal recip-
rocal quadratic stretches A{ and 1;. A BASIC computer-
program to perform these computations is appended,
but a hand calculator would suffice. (For student tuition
R. Burger, personal communication, advocates use of
an Excel™ spreadsheet.) Note that the solution is not
always real because all possible combinations of three
radii of a quadratic do not necessarily lie on am ellipse
(some lie on a hyperbola or, in special cases, onastraight
line). When real data are employed, complex solutions
either invalidate the assumption of homogeneous strain
or reflect on the quality of the longitudinal strain mar-
kers. Also note that large errors ensue if two of the
chosen lines are close to each other, especially if they are
also close to the strain ellipse short axis.
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EXAMPLE

An application of the above equations is illustrated
using the problem in Ramsay & Huber (1983, p. 104).
This problem was also chosen by Ragan (1987) to illus-
trate his matrix algebra method. Three longitudinal
strain measurements are made on boudinaged belem-
nites of known orientation in the deformed state. Opti-
mal result would be obtained by applying Ferguson’s
(1981) strain reversal technique to the three markers;
however, for ease of comparison with the previously
published results, the stretch and reciprocal quadratic
stretch values from Ramsay & Huber are taken as given.
Substituting A, = 0.41 (=1/1.56%), 4, = 0.30 (=1/1.82?),
AL =0.18(=1/2.38%), ¢, = —68°, ¢, = —220°and ¢, = 0°
into equation (20) yields ¢, = 4.32° (positive clockwise),
which is close to Ramsay & Huber’s graphically deter-
mined value of 4° and Ragan’s (1987) matrix solution,
4.3° in the present reference frame. Substitution of ¢,,
¢y, ¢. and ¢, into equation (22) yields 4] = 0.175
(=1/2.39%) and 4, = 0.43 (=1/1.52%), which compare
with Ramsay & Huber’s determinations, A = 0.18 and
A5 =0.42 and Ragan’s of A{ = 0.18 and 4; = 0.43. While
the second decimal place is not geologically significant,
it is essential to carry at least two decimals through the
calculation to avoid accumulating rounding errors.

APPLICATIONS

An immediate application will be found in the field of
finite-element analysis. If the lines subscripted a, b, c are
taken to be the boundaries of an element undergoing
finite deformation, then the strain state within the ele-
ment may be interpolated using equations (21) and (22).
By virtue of the continuity of elements in a grid, neigh-
boring elements will always yield compatible strain
states. This simple solution to strain interpolation
requires less data than the standard engineering
approach using infinitesimal approximation parameters
e and y/2, because the displacement gradients are not
required to be known. Only longitudinal strains, not
rotations of the boundaries, are used and consequently
the stretch, but not the rotational, component of defor-
mation is interpolated.

In addition to the solution of two-dimensional prob-
lems, these equations have important implications for
three-dimensional strain studies. While the amount of
calculation involved is time-consuming without the aid
of a computer, the method is far easier to understand
than any alternatives and so is more likely to be of use to
practical structural geologists. Given three strain ellipses
measured in three arbitrary sections (not necessarily
principal or even mutually orthogonal), the strain ellipse
in any fourth section may be determined by a combina-
tion of standard stereonet procedure to find the stretches
along the three lines of intersection of the fourth plane
with the three measurement planes and the equations of
this paper to deduce the fourth sectional strain ellipse.
By repeated application of this procedure to a set of
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planes, say a set containing the vertical, the maximum
and minimum semiaxes of the triaxial strain ellipsoid
may be found. The intermediate ellipsoid axis is easily
found by plotting the pole to the minimaxal plane and
then solving for the strain ellipse in the vertical plane
containing that pole (De Paor, in preparation).
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APPENDIX

The following program solves equations (21) and (22), and outputs
the principal direction and principal stretches given three strain
markers. The code is written for the ZBASIC™ compiler and runs on
any Macintosh microcomputer; it should be easily translatable to suit
other hardware and software. Do not type a carriage return between
single-spaced lines; all distinct lines of code are double-spaced.

'Program Solve3stretches: ZBasic™ Source Code’
CLEAR

DEFDBL a-z:' Double precision’

DIM stretch(3),

lambdaprime(3), phi(3)

DIM Pstretch(2), Plambdaprime(2) Pphi(2)
a=lb=21c=3

pi = 4*ATN(1)

radians = pi/180

degrees = 180/pi

"Start”
FORi=aTOc

PRINT "Enter
".CHRS$(96+i);"”

stretch and orientation of line

INPUT stretch(i), phi(i)
lambdaprime(i) = 1/stretch(i)"2

phi(i) = phi(i)*radians

NEXT i

‘equation (21)

numerator = 0: denominator = 0
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FORi=aTOc:j=1iMODc+ 1:k=3MODc+1

NEXT i

numerator = numerator + (lambdaprime(i)—
lambdaprime(j))*COS(2+phi(k))

denominator = denominator + (lambdaprime(i)-
lambdaprime(j))*SIN(2+phi(k))

SELECT denominator

CASE >0

Pphi(1) = — .5+ ATN(numerator/denominator)
CASE =0

Pphi(l) = —pi/4

CASE <0

Pphi(1) = —~ .5+ ATN(numerator/denominator)+pi

END SELECT

Pphi(2) = Pphi(1)~pi/2

‘equation (22)

FORi=1TO2)=1MOD2+1

IF phi(a) = Pphi(i) OR phi(b) = Pphi(i) THEN
phi(a) = phi(a)+.001:PRINT "/0 approximation”

numerator = lambdaprime(a)/COS(phi(a)—Pphi(j))"2—
lambdaprime(h)/COS(phi(b)—Pphi(j))"2

denominator = TAN(phi(a)—Pphi(j)) 2—
TAN(phi(b)—Pphi(j))"2

IF denominator <> 0 THEN Plambdaprime(i) =
numerator/denominator ELSE "ComplexNumber”

Pstreteh(i) = 1/SQR(Plambdaprime(i})

NEXT i

IF Pstretch(1) = Pstretch(2) THEN "Isotropic”
LONG IF Pstretch(2) > Pstretch(i)

SWAP Pstretch(2).Pstretch(1)

SWAP Plambdaprime(2).Plambdaprime(1)

SWAP Pphi(2).Pphi(1)
END IF
FORi = 1TO?

PRINT:PRINT "Principal direction: ”; Pphi(i)*degree

PRINT "Stretch. reciprocal quadratic stretch =
".Pstretch(i),Plambdaprime(i)

NEXT i
PRINT:PRINT "Strain Ratio = ": Pstretch(1)/Pstretch(2)

GOTO "Response”

“Isotropic”

PRINT "Strain ellipse is a circle of radius “:Pstretch(1);".
No unique axes.”

GOTO "Response”

"Complex Number”

PRINT "No real solution for this data, O.K.?"

"Response”

INPUT "Type Q" to quit or any-other key for another
caleulation . .."; anykey$

anykey$ = UCASES$(anykey$): IF anykey$ <> "Q" THEN
"Start” ELSE END



