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Abstract--In a domain of finite homogeneous deformation, the strain ellipse is uniquely specified by three 
linearly independent stretch measurements. An exact determination of the principal reciprocal quadratic 
stretches and principal directions is obtained by solving three simultaneous equations. The equations derived 
have important applications to the problem of constructing the strain ellipsoid from sectional data and to 
finite-element interpolation. 

INTRODUCTION 

DETERMINATION of the strain ellipse from three measured 
stretches is a classic problem in geological strain analysis. 
Ramsay (1967, pp. 80-81) presented a graphical 
approach using the Mohr circle construction. This solu- 
tion was also adopted by Ramsay & Huber (1983, pp. 
91-104), whilst Sanderson (1977) and Ragan (1987) 
introduced alternative procedures. The existence of an 
exact solution using three simultaneous quadratic equa- 
tions has been alluded to by previous workers, but 
Ragan's method of matrix inversion and eigenvector 
determination is the only direct treatment available. The 
derivation in this paper yields the elusive solution to the 
three simultaneous stretch equations; it differs from 
Ragan's approach in that one-line expressions for princi- 
pal directions and reciprocal quadratic stretches are 
obtained. As in all previous treatments, the analysis is 
two-dimensional and strain homogeneity is assumed. 

DERIVATION 

Following standard notation, 4' denotes the reciprocal 
quadratic stretch of a line and ¢ its orientation relative to 
an arbitrary zero direction in the deformed state. Three 
longitudinal strain markers are distinguished by sub- 
scripts a, b, c and the principal directions in the deformed 
state are labelled 1 and 2. From the equation of an ellipse 
oriented oblique to its reference frame (Fig. 1) 

4~ cos 2 (¢~ - ¢1) + 4~ sin 2 (¢~ - ¢1) = 1, (1) 
41 42 

where 4~ denotes the squared length of an arbitrary 
radius at an angle ¢~ to the zero direction. Rearranging, 

writing 2' for 1/4, and repeating for subscripts b and c, 

2~, = 2~ cos 2 (¢~ - ¢1) + 4~ sin 2 (¢, - ¢1) (2) 

4~ = ).~ cos 2 (¢b -- ¢ 0  + 2~ sin 2 (¢b -- ¢ 0  (3) 

4 c = 4~ COS 2 (¢c  -- ¢1)  "1- 4~ sin 2 (¢c - ¢1) (4) 

(compare Ramsay 1967, equation 3-31). Dividing equa- 
tion (2) by sin 2 ( ¢ , -  ¢t) and equation (3) by 
s in2 (¢b -- ¢1), 

4'o 4~ + 4~ (5) 
s in2 (¢~ - ¢1) = tan2 (¢~ - ¢1) 

4~ 41 
+ 4j, (6) 

sin2 (¢b -- ¢1) tan2 (¢0 -- ¢1) 

then subtracting equation (6) from equation (5) to elimi- 
nate 4~, 

4" 41 
sin2 (¢. - ¢1) tan2 (¢. - ¢1) 

4/~ 41 t 

= sin z (¢b - ¢1) - tan2 (¢h - ¢1) (7) 

Zero Direction 

Fig. 1. Strain ellipse with strain marker a. Simple trigonometry yields 
equation (1). 

639 



640 D . G .  DE PAOR 

Similarly. 21 may  be e l iminated to yield 

2.,', 
- 2" tan:  (qL - (P~) 

c o s  2 ( ~ 0 .  - ~,,) 
~ t  
Ab 

- 2.-; t a  n 2  (~Pt, - O l ) .  
= c o s  2 ( ' P ~  - 0 , )  

Equat ions  (7) and (8) may  be rea r ranged  thus,  

,~:, 2./, 
sin2 (~P. - Oi) sin2 (~P~ - q~) 

,~'1 = 
1 1 

tan2 (q~, - 01) - tan2 (q~t, - q~) 

(8) 

(9) 

2.; 2~/, 
COS2 (~0a - -  (~1) COS2 (q}b - -  q} l )  

2~ = (10) 
tan 2 (0 ,  - q~,) - tan 2 (q~ - q~,) 

These  are express ions  for  the principal  reciprocal  quad-  
ratic s t re tches  in te rms  of  two arb i t ra ry  longitudinal  
strain marke r s  a and b, and the m a x i m u m  principal  
s tretch direct ion ~0~. In o rder  to e l iminate  the lat ter ,  the 
third strain ma rke r ,  c, must  be employed .  

F rom the well known proper t i es  of  M o h r  circle con- 
struct ions (e.g. R a m s a y  1967, p. 69), equat ions  (2), (3) 
and (4) may  be rewri t ten thus, 

2,, 2 1 + 2 . ; + 2 1 - 2 ;  
' - " ~ c o s  2 ( ~ .  - ~ )  ( 1 1 )  

2 2 

2h 2 . 1 + 2 ; + 2 1 - 2 ;  ' - " -----------='cos 2 ( ~  - ~ )  (12) 
2 2 

2,. 2.1 + 2; + 21 - ~ ' - - - -  -----------:-cos 2 ( ~ , . -  ~ ) .  (13) 
2 2 

Subtract ing equa t ion  (12) f rom equa t ion  (11) and equa-  
t ion (13) f rom equat ion  (12), 

2[, - 2/, - 21 - 2.; [cos 2(c/),, - cpi ) - cos 2(q~, - q~)] 

(14) 

_ " - 2 "  
2.;, - 2.~ '% " [cos 2(q~t, - ~p~) - cos 2 ( ~ , -  q~)]. 

(15) 

(21 - 2;) /2,  by cross- El iminat ing the c o m m o n  factor. 
division, 

Ah 

cos 2 ( 0 .  - q)~) - cos 2(0t, - q~, 

(16) 
cos 2(0h - q01) - cos 2(q~,. - q01) 

or,  in o the r  words .  

) . ' [cos 2(q~h - q~l) - cos 2(¢ ,  - q~l)] 

+ 2/,[cos 2(0,. - (Pl) - cos 2(0 , ,  - q~l)] 

+ 2;.[cos 2 ( 0 ,  - 0 1 )  - cos 2(~/, - q~l)] = 0. (17) 

Regroup ing  the factors  in equa t ion  ( 1 7 ) ,  

(2,~ - 2;,) cos 2(q~, -- q~j) + (2;, - 2.[) cos 2 (0 .  - q),) 

+ (2; - 2 ; , ) c o s 2 ( ¢ ~ , -  q~) = 0. (18) 

Using the cosine rule. cos (A - B) = cos A . c o s  B + 
sin A .  sin B .  equat ion  t 18) becomes  

[(24 - 2;,) cos 2ca, + (2./, - ;q)  cos 2 ¢ .  
+ (2~. - 2,;) cos 2q~,] cos 201 

+ [(2,; - 2;,) sin 20,  + (2/, - 2~) sin 2q~, 

+ (2; - 2,',) sin 2~,1 sin 2q~ 1 = 0. (19) 

To  solve for the unknown principal  direct ion,  divide 
equa t ion  (19) by cos 20~. and then by the coefficient of  
sin 2qh. 

(2',, - 2.;,) cos 2q~,. + ( 2 / , , -  2~.) cos 20 ,  ] 
+ (2, - 2") cos 2q~b ] 

tan 2q~, = - (2,', 2;,) s in 20 ,  + (2;, - 2.[.) sin 2q~~,, [ 

+ (2; - 2") sin 2q~hJ 

o r  

1 
q~ = - z  arctan 

Z 

(2,; - 2;,) cos 2q~,. + (2;, - 2.~.) cos 2q~,,] 
+ (,~; - ,~;) cos  2q~h] 

, - : - ' -  ~ "7-7V .":--- g-7-~ " 

1 ~ 2,,) s,n 2q~c + (2,, - Z,.) s,n 2q~,, / 
+ (2, - 2,,) sm -q~bJ 

(20) 

Equa t ion  (20) may  be wri t ten m o r e  succinctly using 
summat ions  ranging over  a pe rmuta t ion  of  the sub- 
scripts. 

l [ ~  (2,', - 2;,) c°s  2q~ ] 
, ,b,,  • (21) qh = - - ~ a r c t a n  ~ (2,', - 2;,) sin 2q~c 
a,bd 

Equat ions  (9) and ( t0)  may  also be tidied by writing 
02  = epl - ~ / 2 .  

" t  2 " r  
, /~,, sec (¢p, - q2/) - Z~, sec 2 (¢Pb - q~/) (22) 

2i = tan2 (@, - 0i) - tan2 (q~h - q~i) 

for  i -  1. 2 and j -  2, 1. These  two equat ions  give 
express ions  for  unknown  p a r a m e t e r s  of  the principal  
direct ions (subscripts  1 and 2) in te rms  of  known pa ram-  
eters  of  the lines subscr ipted a. b and c. In pract ice ,  given 
three  independen t  longitudinal  strain marke r s ,  equa t ion  
(21) is solved first and the resul tant  value of  01 is 
subst i tuted in equa t ion  (22) to obta in  the principal  recip- 
rocal quadra t ic  s t re tches  21 and 2-;. A B A S I C  compute r -  
p rog ram to pe r fo rm these computa t ions  is a p p e n d e d .  
but  a hand  calcula tor  would suffice. (For  s tudent  tuit ion 
R. Burger ,  personal  communica t ion ,  advoca tes  use of  
an Excel  TM spreadshee t . )  No te  that  the solut ion is not 
always real because  all possible  combina t ions  of  three  
radii of  a quadra t ic  do not necessari ly lie on an ellipse 
I some lie on a hype rbo la  or.  in special cases, on a straight 
line). W h e n  real data  are emp loyed ,  complex  solutions 
e i ther  invalidate the assumpt ion  of  h o m o g e n e o u s  strain 
or  reflect on the quali ty of  the longitudinal  strain mar-  
kers. Also note that  large er rors  ensue if two of  the 
chosen lines are close to each o ther ,  especial ly if they are 
also close to the strain ellipse short  axis 
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EXAMPLE 

An application of the above equations is illustrated 
using the problem in Ramsay & Huber (1983, p. 104). 
This problem was also chosen by Ragan (1987) to illus- 
trate his matrix algebra method. Three longitudinal 
strain measurements are made on boudinaged belem- 
nites of known orientation in the deformed state. Opti- 
mal result would be obtained by applying Ferguson's 
(1981) strain reversal technique to the three markers; 
however, for ease of comparison with the previously 
published results, the stretch and reciprocal quadratic 
stretch values from Ramsay & Huber are taken as given. 
Substituting 2'~ = 0.41 (=1/1.562), ~.~ = 0.30 (=1/1.822), 
2~ = 0.18 (=1/2.382), q~, = -68  °, ~bb = --220 ° and q~c = 0° 
into equation (20) yields q~l = 4.32° (positive clockwise), 
which is close to Ramsay & Huber's graphically deter- 
mined value of 4 ° and Ragan's (1987) matrix solution, 
4.3 ° in the present reference frame. Substitution of q~, 
~bb, q~c and ~1 into equation (22) yields 2~ = 0.175 
(=1/2.392) and 2~ = 0.43 (=1/1.522), which compare 
with Ramsay & Huber 's determinations, 2.~ = 0.18 and 
2~ = 0.42 and Ragan's of ;t~ = 0.18 and 2j = 0.43. While 
the second decimal place is not geologically significant, 
it is essential to carry at least two decimals through the 
calculation to avoid accumulating rounding errors. 

APPLICATIONS 

An immediate application will be found in the field of 
finite-element analysis. If the lines subscripted a, b, c are 
taken to be the boundaries of an element undergoing 
finite deformation, then the strain state within the ele- 
ment may be interpolated using equations (21) and (22). 
By virtue of the continuity of elements in a grid, neigh- 
boring elements will always yield compatible strain 
states. This simple solution to strain interpolation 
requires less data than the standard engineering 
approach using infinitesimal approximation parameters 
e and ),/2, because the displacement gradients are not 
required to be known. Only longitudinal strains, not 
rotations of the boundaries, are used and consequently 
the stretch, but not the rotational, component of defor- 
mation is interpolated. 

In addition to the solution of two-dimensional prob- 
lems, these equations have important implications for 
three-dimensional strain studies. While the amount of 
calculation involved is time-consuming without the aid 
of a computer, the method is far easier to understand 
than any alternatives and so is more likely to be of use to 
practical structural geologists. Given three strain ellipses 
measured in three arbitrary sections (not necessarily 
principal or even mutually orthogonal), the strain ellipse 
in any fourth section may be determined by a combina- 
tion of standard stereonet procedure to find the stretches 
along the three lines of intersection of the fourth plane 
with the three measurement planes and the equations of 
this paper to deduce the fourth sectional strain ellipse. 
By repeated application of this procedure to a set of 

planes, say a set containing the vertical, the maximum 
and minimum semiaxes of the triaxial strain ellipsoid 
may be found. The intermediate ellipsoid axis is easily 
found by plotting the pole to the minimaxal plane and 
then solving for the strain ellipse in the vertical plane 
containing that pole (De Paor, in preparation). 
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APPENDIX 

The following program solves equations (21) and (22), and outputs 
the principal direction and principal stretches given three strain 
markers. The code is written for the ZBASIC TM compiler and runs on 
any Macintosh microcomputer;  it should be easily translatable to suit 
other hardware and software. Do not type a carriage return between 
single-spaced lines; all distinct lines of code are double-spaced. 

'Program Solve3stretches: ZBasic TM Source Code '  

C L E A R  

DEFDBL a-z: '  Double precision' 

DIM stretch(3), 

DIM Pstretch(2), 

a =  1 : b = 2 : c = 3  

pi = 4*ATN(I)  

radians = pi/180 

degrees = 180/pi 

lambdaprime(3), phi(3) 

Plambdaprime(2) Pphi(2) 

"Start" 

FOR i = a TO c 

PRINT "Enter stretch 
";CHR$(96+i);":" 

INPUT stretch(i), phi(i) 

lambdaprime(i) = 1/stretch(i)^2 

phi(i) = phi(i)*radians 

and orientation of line 

N E X T i  

'equation (21)' 

numerator = 0: denominator  = 0 
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F O R i  = a T O c :  j = i M O D c +  1: k = j M O D c +  1 

numera tor  = numera to r  + ( l a m b d a p r i m e ( i ) -  
l ambdapr ime( j ) )*COS(2*phi (k) )  

denomina to r  = denomina to r  + ( l a m b d a p r i m e ( i ) -  
l ambdapr ime( j ) )*SIN(2*phi (k) )  

N E X T  i 

S E L E C T  denomina to r  

N E X T  i 

IF Pstretch(1) = Pstretch(2) T H E N  "lsotropic" 

L O N G  IF Pstretch(2) > Pstretch( l ) 

S W A P  Pstretch(2) ,Pstrctch(  1 ) 

S W A P  Plambdapr ime(2) ,P lambdapr ime(  1 ) 

S W A P  Pphi(2),Pphi(  1 } 

CASE > II 

Pphi( l )  = - . 5*ATN(numera to r /denomina to r )  

C A S E  = 0 

Pphi(1) = - pi/4 

C A S E  < 0 

Pphi( 1 ) = - . 5 * A T N ( n u m e r a t o r / d e n o m i n a t o r ) + p i  

E N D  S E L E C T  

E N D  IF 

F O R  i = 1 T O  2 

P R I N T : P R I N T  '!Principal direction: "; Pphi(i)*degree 

P R I N T  "Stretch, reciprocal quadrat ic  stretch = 
" ;Pstre tch( i ) ,Plambdaprime(i)  

N E X T  i 

P R I N T : P R I N T  "Strain Ratio = ": Pstre tch( l ) /Pstre tch(2)  

G O T O  "Response" 

Pphi(2) = P p h i ( l ) - p i / 2  

'equat ion 

F O R  i = 

(22)' 

I T O 2 : j  = i M O D 2 +  t 

IF phi(a) = Pphi(i) O R  phi(b)  = Pphi(i) T H E N  
phi(a) = phi(a)+.001 :PRINT '70 approximat ion"  

n u m e r a t o r =  l a m b d a p r i m e ( a ) / C O S ( p h i ( a ) -  Pphi( j))  " 2 -  
l a m b d a p r i m e ( b ) / C O S ( p h i ( b ) - P p h i ( j ) )  ~ 2 

denomina to r  = T A N ( p h i ( a ) - P p h i ( j ) ) ' 2 -  
T A N ( p h i ( b ) - P p h i {  i))~2 

IF denomina to r  < > (l T H E N  Plambdapr ime( i )  = 
numera to r /denomina to r  ELSE "ComplexNumber"  

Pslretch(i) = l /SQR(Plambdapr ime( i ) )  

"Isotropic" 

P R I N T  "Strain ellipse is a circle of radius ":Pstretch( I );". 
No unique axes." 

G O T O  "Response" 

"Complex Number"  

P R I N T  "No real solution for this data, O.K.?"  

"Response" 

I N P U T  "Type ' Q '  to quit or  any o ther  key for ano ther  
calculat ion. . ." :  anykey$ 

anykey$ = UCASE$(anykey$) :  IF anykey$ < > "Q" T H E N  
"Start, ELSE E N D  


